基于样本熵与决策树调节算法的轴承故障识别
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

安徽省高校自然科学研究重点项目(KJ2015A394)和安徽经济管理学院院级课题(YJKT1516YB07)共同资助。


Based on sample entropy and decision tree algorithm for regulation of bearing fault diagnosis
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    轴承故障是导致机器发生事故的重要原因之一。为更好地识别出故障类型,使用一种包络样本熵和决策树门限值自适应调节算法相结合的方法。首先将信号分解成若干IMF之和,选取包含丰富故障信息的IMF求其包络信号的样本熵,最后通过决策树自适应调节门限值准确判断出轴承故障类型。分析结果表明,该方法不仅可以通过反馈减少运算量,而且能够通过决策树门限值的自适应调节来提高轴承故障的识别率,综合识别率可达到96.75%。

    Abstract:

    Bearing failure is one of the important reasons for machine accidents. To better identify fault types, this paper used a method which combines envelope sample entropy with decision tree gate limit value adaptive adjustment algorithm. We firstly decomposed the signal into several IMFs and selected the sample entropy of the envelope signal from the IMF which contains a number of diagnostic information, and then, the type of bearing failure was accurately determined by decision tree adaptive adjustment gate limit value.Analysis results showed that this method can not only reduce the computational complexity through the feedback, but also improve the recognition rate of bearing failure through the decision tree threshold adaptive adjustment. Comprehensive recognition rate can reach 96.75%.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2017-03-19
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2017-11-23