小麦赤霉病CBR预测模型参数的优化
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

公益性行业(农业)科研专项(201203016)资助。


Parameter optimization for CBR model of wheat scab
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    基于类比推理人工智能方法CBR原理建立了以时间序列为轴线的小麦赤霉病滚动预测模型。为提高模型预测的准确性,利用安徽省农作物病虫数据库,结合专家经验会商的结果,优化筛选该预测模型中的预测单元、预测阶段、各预测阶段的权重、气象因子及其权重等各关键预测参数,并检验其预测的准确性。结果表明,运用优化后的参数,小麦赤霉病CBR预测模型常年预测准确率可达84.21%。故优化后的预测参数可用于小麦赤霉病CBR预测模型。

    Abstract:

    A rolling forecasting model of wheat scab was set up using CBR theory with time series. To improve the accuracy and reliability of this model, impact factors and parameters, such as model unit, prediction stages, meteorological factors and its weight were optimized by using the database system of crops pests in Anhui province and the results of expert consultation. The accuracy of CBR model of wheat scab with optimized parameters was tested, and the results showed that the precision rate was 84.21% in a normal year. The optimized factors and parameters could be applied to the forecasting model of wheat scab.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2016-12-05