基于图像信息的马铃薯薯形检测方法研究
DOI:
作者:
作者单位:

作者简介:

通讯作者:

基金项目:

安徽农业大学青年基金重点项目(2012zd004)和稳定和引进人才项目共同资助。


Potato shape detection based on image edge information
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    马铃薯按薯形分级是提高其经济价值的重要方法。作者提出了一种基于图像边缘信息的薯形检测方法。从马铃薯BMP图像中提取R、G、B分量,利用R+G-B构建灰度图像,经开、闭形态学处理和二值化处理后,运用canny算子检测出边缘点信息;最后利用最大横径与最大纵径的比值作为形状特征参数,建立马铃薯薯形的预测规则。试验结果表明,该方法可以有效地判断马铃薯薯形,为在线检测马铃薯形状奠定了基础。

    Abstract:

    Sorting potato by shape is an important way to improve the economic value of patato. This paper presents an image edge information based detection method. Firstly, the original BMP image was grayed by using the formula of “R+G-B”, and then the gray image was changed into binary image after open and close morphological processing; later, the edge was detected by ‘canny’ module; finally, the maximum transverse diameter (L) and the maximum longitudinal diameter (LD) were defined with the edge information. And the value of L/LD was selected to be the shape characterization parameters. The test results show that this detection method can be effectively applied into potato classification, specifically for online detection of potato shape.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2013-04-01
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2016-12-06